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ABSTRACT: A creep model that describes the creep characteristics of nylon6.6 tire
materials is proposed. An equation resulting from the model was used to fit the
experimental curves by nonlinear regression. The results outline a good correlation
between theoretical and experimental curves. © 1999 John Wiley & Sons, Inc. J Appl Polym
Sci 72: 1505–1511, 1999
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INTRODUCTION

Creep is one of the time-dependent aspects of the
mechanical properties of fibers which has consid-
erable importance on short- and long-term prod-
uct performance. Particularly, of the long-term
physical properties critical to product acceptance
in many engineering applications, creep is one of
the most fundamental considerations. All fibrous
materials creep to a greater or lesser extent and
the general form of a creep curve is shown in
Figure 1. The curve shows that when stress is
applied to a material there is an instantaneous
extension followed by rapid creep. This part is
referred to as primary creep. After primary creep,
there is a steady elongation referred to as second-
ary creep, then an accelerated creep leading to
rupture known as tertiary creep. Some textile
fibers fail before tertiary creep is reached.

Numerous empirical mathematical expres-
sions have been proposed by researchers to de-
scribe experimentally observed creep data ob-
tained at ambient conditions. In some cases, the
derived relationships were only valid within the
time interval conditions of the experiment. Mod-

els to help explain the creep behavior of materials
have been developed by researchers such as
Vangheluwe,1 Bonner,2 and Ward and Wilding.3

Vangheluwe investigated the influence of the
strain rate and yarn tex on tensile test results
and proposed that the tensile curve can be de-
scribed using a Maxwell element placed in paral-
lel with a nonlinear spring. Bonner used the Ey-
ring4 approach to investigate the creep behavior
of oriented polyethylene. This approach assumes
that the deformation of a polymer is a thermally
activated process involving the motion of seg-
ments of chain molecules over potential barriers.
Ward and Wilding3 used the same approach to
investigate the creep behavior of ultrahigh-mod-
ulus polyethylene and found that there was a very
good correlation between theoretical and experi-
mental curves. This article proposes a theoretical
model that describes the experimental creep char-
acteristics of nylon6.6 tire cords observed over a
range of temperatures in an isothermal mode of
experiments.

A THEORETICAL MODEL

The proposed model is based on the Voigt ele-
ment. A nonlinear spring is placed in series with
the element. Similar models have been used by
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researchers such as Ward and Hadley,5 Morton
and Hearle,6 and Young and Lovell.7 The model is
presented in Figure 2(a,b).

From Figure 2, the total strain e can be defined
as

e 5 es 1 ev (1)

where es is the nonlinear spring strain, ev is the
strain for the Voigt element

ev 5 e1 5 e2 (2)

e1 is the strain in the linear spring, and e2 is
the strain in the dashpot.

The nonlinear spring can be defined using the
equation

ss 5 kes
n (3)

where k is the spring constant and the power n
indicates a nonlinearity in the spring when n
Þ 1.

Rearranging eq. (3) results in

es 5 ~ss/k!1/n (4)

Since the nonlinear spring and the Voigt element
are in series, the total strain of the system is

s 5 ss 5 sv (5)

where s is the total stress for the Voigt element
and

sv 5 s1 1 s2 (6)

Figure 1 Schematic diagram of strain during creep
for a typical viscoelastic material.

Figure 2 (a): A proposed model that describes the creep of nylon6.6 tire cords. (b)
Creep behavior of the proposed model.
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s1 and s2 being the stresses on the linear spring
and dashpot, respectively. Equation (4) then be-
comes

es 5 ~s/k!1/n (7)

In the linear spring of the Voigt element,

s1 5 Ee1 (8)

where E is the spring modulus, and in the dash-
pot,

s2 5 h de2/dt (9)

where h is the viscosity. Since e1 5 e2 5 ev, eqs.
(8) and (9) can be written as

s1 5 Eev (10)

s2 5 h dev/dt (11)

The dashpot describes the viscoelasticity of the
material. At high constant temperatures (50°C
and above), h will flow steadily as at low temper-
atures (e.g., room temperature around 20°C), but
more rapidly. At conditions where the tempera-
ture was cycled between low and high (e.g., be-
tween 25 and 100°C), the material undergoes dif-
ferent creep phases such that h increases and
decreases with temperature. The viscous flow is
thus not steady and thereby the present theory
will not apply for such nonisothermal experimen-
tal configurations.

Combining eqs. (6), (10), and (11), eq. (12) can
be obtained:

sv 5 Eev 1 h dev/dt (12)

Rearranging eq. (12) results in

dev/dt 5 s0/h 2 Eev/h (13)

In creep experiments,

s 5 s0 5 constant (14)

and eq. (13) then becomes

dev/dt 5 s0/h 2 Eev/h (15)

Integrating eq. (15) results in

ev 5 ~s0/E!$1 2 exp~ 2 Et/h!% (16)

The above equations define the behavior of the
model shown in Figure 2(a). The total strain for
the model is given by eqs. (1), which yields

e 5 ~s0/k!1/n 1 ~s0/E!$1 2 exp~ 2 Et/h!% ~17!

The constant ratio h/E can be replaced by t, the
retardation time, so that the variation of the
strain with time for the proposed model of a tire
cord undergoing creep loading is given by

e 5 ~s0/k!1/n 1 ~s0/E!$1 2 exp~ 2 t/t!% (18)

Perhaps it is appropriate to mention here that
earlier researchers have found that most of the
strain occurs within the retardation time.8

Equation (18) is fitted on experimental curves
using nonlinear regression to enable the predic-
tion of the creep of cords at any given time within
the breaking limit. If the coefficient of determina-
tion R2 for the fitted curve is high, there is a good
dependence of creep on time, and the fit is good.
R2 is a measure of total variation of creep that is
explained by eq. (18), a perfect fit being achieved
when R2 5 1. The values of R2 were calculated
using the Microsoft Excel computer program.
This program enables the creation of graphs and
also enables the determination of their equations
and coefficients of determination R2.

We have shown in eq. (18) that

e 5 ~s0/k!1/n 1 ~s0/E!$1 2 e2t/t%

At instantaneous extension, t 5 0, and the initial
strain is therefore

e0 5 ~s0/k!1/n (19)

and when t 5 `, the eventual strain

e` 5 ~s0/k!1/n 1 ~s0/E! (20)

The strains in eqs. (19) and (20) are illustrated in
Figure 3, which shows the creep curve for the
untreated cord at 130°C (creep % 5 strain %
2 e0%) and, therefore,
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e` < er 5 ~s0/k!1/n 1 s0/E

5 e0 1 s0/E (21)

where er is the strain at rupture. Hence, s0/E
5 er 2 e0, resulting in

E 5 s0/~er 2 e0! (22)

Further, when t 5 t,

et 5 ~s0/k!1/n 1 ~s0/E!~1 2 e21!

5 e0 1 ~s0/E!0.63

Using eq. (21),

et 5 e0 1 0.63~er 2 e0! 5 0.63 er 1 0.37 e0

Hence, if et is known, from the experimental
curves t can therefore be found. When t is known,
and the value of E calculated using eq. (22), we
have

t 5 h/E

resulting in

h 5 tE (23)

The values of E, et, t, and h are given in Table
I. It can be observed that E, t, and h increase
with decreasing temperature. As the tempera-
ture increases, the molecular flow in the poly-
mer becomes faster and therefore the amount of
stress required to cause strain is reduced, the

Figure 3 An illustration of initial strain (e0) and
strain at rupture (er) for untreated cord at 130°C. t is
the retardation time, and tr, the breaking time.

Table I Calculated Values of Parameters as Outlined in Eqs. (17) and (18)

Material
E 3 103

(Nm22)
et 3 1023

(m)
t

(min)
h 3 105

(Nm22 min)

Yarn at 150°C 18.75 16.72 10 1.88
Yarn at 130°C 33.33 16.23 20 6.67
Yarn at 100°C 37.50 16.05 60 22.50
Yarn at 75°C 60.00 14.73 180 108.00
Yarn at 50°C 66.67 14.57 740 493.36

Untreated cord at 150°C 17.65 21.63 5 0.09
Untreated cord at 130°C 28.57 22.15 10 2.86
Untreated cord at 100°C 33.33 21.23 20 6.67
Untreated cord at 75°C 40.00 20.75 40 16.00
Untreated cord at 50°C 50.00 20.82 120 60.00
Untreated cord at room

temperature ('21°C)
66.67 20.47 2400 1600.08

Dipped cord at 150°C 15.38 21.35 5 0.08
Dipped cord at 130°C 20.69 21.63 5 1.04
Dipped cord at 100°C 35.29 21.13 10 3.53
Dipped cord at 75°C 46.15 20.72 30 13.85
Dipped cord at 50°C 54.55 20.59 60 32.73
Dipped cord at room

temperature ('21°C)
60.00 19.13 2040 1224.00
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time within which the strain takes place is also
reduced, and the material becomes more vis-
cous.

EXPERIMENTAL AND CURVE FITTING

Tests to determine the creep characteristics of
nylon6.6 tire materials were carried out on

yarn, an untreated cord, and a cord dipped in
resorcinol formaldehyde latex resin. The cords
were made by twisting together two yarns each
of 140 tex. The tests were performed at temper-
atures of 150, 130, 100, 75, 50°C, and room
temperature around 20°C, involving a newly
built creep tester. All test samples had initial
lengths of 200 mm. The experimental loads
used were 40 and 60% of the breaking loads of
the yarn, untreated and dipped cords as appro-
priate, measured at standard atmospheric con-
ditions of 21°C temperature and 65% relative
humidity. The strain profile of the yarn and

Table II Strains of Nylon6.6 Tire Cord Materials at 40% and 60% Stress Levels

Material
e40 3 1023

(m)
e60 3 1023

(m) Multiplying Factor n k

Yarn at 150°C 23.5 29.4 1.25 1.81 19.39
Yarn at 130°C 24.6 30.2 1.23 1.96 24.40
Yarn at 100°C 24.5 29.9 1.22 2.03 28.23
Yarn at 75°C 23.1 28.9 1.21 2.11 25.80
Yarn at 50°C 23.0 28.6 1.23 2.35 60.92

Untreated cord at 150°C 30.8 38.9 1.23 1.67 9.36
Untreated cord at 130°C 32.9 41.6 1.26 1.73 9.08
Untreated cord at 100°C 32.9 40.1 1.22 2.05 16.09
Untreated cord at 75°C 33.0 39.6 1.20 2.20 21.16
Untreated cord at 50°C 32.5 38.8 1.23 2.30 24.31
Untreated cord at room

temperature
33.4 39.7 1.19 2.35 26.66

Dipped cord at 150°C 30.2 38.5 1.23 1.67 9.78
Dipped cord at 130°C 31.8 39.5 1.24 1.87 12.40
Dipped cord at 100°C 30.9 37.9 1.23 1.99 17.62
Dipped cord at 75°C 32.7 39.7 1.21 2.09 11.89
Dipped cord at 50°C 31.8 38.5 1.21 2.12 18.39
Dipped cord at room

temperature
30.5 36.7 1.20 2.19 24.73

a e40 and e60 are the instantaneous extension at the 40 and 60% stress levels, respectively.

Figure 4 Effect of temperature on the behavior of
nonlinear spring (a) yarn, (b) untreated cord, and (c)
dipped cord.

Figure 5 Experimental and theoretical creep curves
for yarn at 75°C: (——) experimental; (- - -) theoretical.
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untreated and dipped cords at 40% and 60%
stress levels at different temperatures are given
in Table II.

To find k and n, consider the following: If e is
measured at levels of stress s0 5 40% and 60% of
the ultimate breaking stress, the corresponding
instantaneous strains are e40 and e60. Thus,

s40 5 ke40
n

s60 5 ke60
n

Dividing

s60/s40 5 ~e60/e40!
n 5 1.5

Hence,

n log e60/e40 5 log 1.5,

that is,

n 5 log 1.5/log e60 2 log e40. (24)

When n is known, we return to eq. (20) to find k
(Table II):

k 5 s0/e0
n (25)

An examination of the values of the nonlinear-
ity index n shown in Table II reveals that n de-
creases with increasing temperature and this
trend is illustrated in Figure 4. There exist rea-
sonably linear relationships between n and the
experimental temperatures for the yarn, the un-
treated cord, and the dipped cord. Thus, it is not
only the viscosity h that changes with tempera-
ture, but the behavior of the nonlinear spring
changes as well.

The Voigt element placed in series with a
nonlinear spring expresses the viscoelastic be-
havior of these tire cords. The strain resulting
from applying stress s0 is given by eq. (18).
Parameters in eq. (18) were calculated before
this equation was fitted on the experimental
curves (Figs. 5– 8). There seems to be an agree-

Table III Values of Coefficient of
Determination R2

Material R2

Yarn at 75°C 0.944
Yarn at 150°C 0.936
Raw cord at 100°C 0.924
Dipped cord at 130°C 0.892

Figure 6 Experimental and theoretical creep curves
for yarn at 150°C: (——) experimental; (- - -) theoretical.

Figure 7 Experimental and theoretical creep curves
for untreated cord at 100°C: (——) experimental; (- - -)
theoretical.

Figure 8 Experimental and theoretical creep curves
for dipped cord at 130°C: (——) experimental; (- - -) the-
oretical.
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ment between the theoretical and experimental
curves. The values of R2 are around 0.9 (Table
III), which shows a good fit of eq. (18) on the
experimental curves and confirms the depen-
dence of creep on time.

CONCLUSIONS

The model is suggested to represent the creep
behavior of the nylon6.6 tire cords investigated.
The proposed equation has a very good fit on the
isothermal experimental creep curves. Further
theoretical work is necessary to explain the
nonisothermal creep behavior of nylon6.6 tire ma-
terials.

The authors would like to thank Dr. J. G. Tomka and
Dr. G. A. V. Leaf for their fruitful discussions.
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